
Coursework on detection of objects in scenes using machine learning

Yaroslav Ganin
MSU, Department of Mathematics and Mechanics

dr.death.tm@gmail.com

Abstract

In this paper, an algorithm for detection and classifica-
tion of objects on the image is presented. It is based on
supervised machine learning technique (SVM).

An input image is separated into segments that are con-
sidered to be objects. So the problem reduces to the classi-
fication of those segments. Each of them is represented as a
feature vector which components has been chosen in a way
to be well discriminative.

Vectors that correspond to the test data are fed to the
input of the SVM classifier that was previously trained using
pre-labeled vectors.

1. Introduction
The main goal of my work is studying of known meth-

ods in the field of computer vision to develop a solution for
a particular problem. The problem is as follows. A set of
photographs is given. For each photograph we have hand-
marked regions (polygons, to be precise) which correspond
to particular object in the scene. We also have an unmarked
image. We should detect objects on it and make a clas-
sification of them. Let’s consider an example. Suppose
we have an input photo of a street which contains people
on the sidewalk, cars on the road, trees, several buildings.
We are trying to develop a special mechanism that will pro-
duce an image with the following structure: an input photo
is divided into connected pieces; every piece should con-
tain only one object (e.g. a car, a pedestrian, a tree etc.);
moreover pieces that contain the same type of object (e.g.
all pieces with cars) are floodfilled with the same color. In
other words the algorithm should build up the semantic map
of the input photograph.

Modern methods used for the solution of such type of
problems are described in [10], [11], [15], [19], [20].

My approach is to use a supervised machine learning.
According to encyclopedia the definition of the “machine
learning” notion is as follows. “Machine learning is a sci-
entific discipline that is concerned with the design and de-
velopment of algorithms that allow computers to evolve be-

haviors based on empirical data, such as from sensor data or
databases. A major focus of machine learning research is to
automatically learn to recognize complex patterns and make
intelligent decisions based on data; the difficulty lies in the
fact that the set of all possible behaviors given all possible
inputs is too complex to describe generally in programming
languages, so that in effect programs must automatically de-
scribe programs”. [21]

Supervised learning is a machine learning technique for
deducing a function from training data. The task of the su-
pervised learner is to predict the value of the function for
any valid input object after having seen a number of train-
ing examples. To achieve this, the learner has to generalize
from the presented data to unseen situations in a “reason-
able” way.

A particular method that was used in my work is SVM
(Support Vector Machine). This method will be discussed
further in the text.

The paper is organized as follows. Section 2 gives in-
formation on known algorithms that are used in my course-
work. In section 3 an algorithm of solution of the problem
is described step by step. Finally, section 4 concludes the
paper.

2. Components of the proposed algorithm

2.1. Color Structure Code (CSC)

In computer vision segmentation refers to the process of
partitioning a digital image into multiple segments (sets of
pixels, also known as superpixels). The goal of segmenta-
tion is to simplify and/or change the representation of an
image into something that is more meaningful and easier to
analyze. Image segmentation is typically used to locate ob-
jects and boundaries (lines, curves, etc.) in images. More
precisely, image segmentation is the process of assigning a
label to every pixel in an image such that pixels with the
same label share certain visual characteristics.

The result of image segmentation is a set of segments
that collectively cover the entire image, or a set of contours
extracted from the image (see edge detection). Each of the
pixels in a region are similar with respect to some charac-

Figure 1. The hexagonal topology used in the Color Structure
Code segmentation. It makes the algorithm very accurate and well
parallelizable. See section 2.1 for details. Image is taken from [8].

teristic or computed property, such as color, intensity, or
texture. Adjacent regions are significantly different with re-
spect to the same characteristic(s).

The Color Structure Code (CSC) color segmentation
which is used in my course paper was first introduced in
[16]. Next few paragraphs will give a short information on
the method.

Hexagonal structure The CSC segmentation is based
on a special data structure so-called hexagonal island
structure (see fig. 1). Let the smallest circles be pixels and
seven pixels in a specified structure (fig. 2, left) compose
an island. These small islands are so-called “islands on
level 0”. Each seven islands compose another island on
level 1 in the same structure and seven of these new islands
construct another one on level 2. Continue this procedure
until one island covers the whole image. Notice that an
island on level N contains seven islands at most from level
N − 1 or when N = 0 it contains seven pixels instead.

Notice that two neighboring islands on level N are over-
lapped and they share one and only one sub-island; on level
0 this means they share a single pixel. To apply this struc-
ture to an orthogonal bitmap can bring up some difficulties.
One simple method for this transformation is to shift every
other row theoretically by half of a pixel either left or right.
Fig. 2 (center) illustrate an island on level 0 and level 1 over
an orthogonal bitmap. By the help of fig. 2 (rightmost), an
island is shown on level 2 but let us point out that the over-
lapping part of its sub-islands are not precise. It is confined
to one shared sub-island and not other additional pixels.

This hierarchical structure would seem to be compli-
cated but it worth while to build up because this will make

the algorithm so fast and accurate later.

Creating code elements On the described hexagonal
hierarchical structure each island has one or more so-called
code elements. On level 0 a code element simply means
linked pixels which are similar in color. Each island on
level 0 has up to seven code elements depending on the
image and the applied color similarity. It is also important
that the whole island is “covered” by code elements. On
an island on level N where N > 0 a code element is
defined as liked code elements of its sub-islands which are
connected. A code element can be implemented as an array
of pointers to other code elements and on level 0 as an array
of image coordinates. The code elements are stored on the
appropriate islands together with other attributes like area
(number of pixels) and mean color.

In implementation used in the coursework this creation
procedure is a simple request to create all code elements
of the “top level island” and it does everything else due to
the following recursive algorithm. First of all an island on
level N > 0 calls the procedure to create code elements
on all of its sub-islands if necessary (recursion). After all
the code elements of its sub-island have been computed we
can create some new ones on the island itself and link the
appropriate sub-code elements to their lists. Two sub-code
elements must be attached to the same code element if they
are connected and must not if they are not. Whether two el-
ements are connected or not, can be detected easily by com-
paring their list of sub-code elements. If they have an iden-
tical entry they are connected. This part of the algorithm
is also called the linking phase. Trivially, the code element
creation is different on level 0 from that on any other level.
Here we create code elements for the pixels itself on each is-
land. Two pixels are connected to the same code element if
they are similar in color as mentioned earlier in this section.
Furthermore during the linking process it is unnecessary to
create code elements with only one sub-code element be-
cause if the algorithm did not find any connected element
on the same level means that this would be a so-called “root
code element” and it can be collected globally in an array.

This “hierarchical region growing” part of the algorithm
would not have been as powerful and accurate as it is
without the following splitting phase [16] which extend the
segmentation with a global view. That means, before two
connected sub-code elements are to be linked we check
the color similarity between their mean colors. If they are
not similar they will not be liked; moreover they must be
separated by this method because they share a region on a
previous level. The subregions of this common region will
be associate to the one which is closer in color. Therefore
some additional splitting could be required on the lower
level and in these cases we should act in the same way
which means an elegant recursion in the implementation.

Figure 2. An illustration of hexagonal topology in the Color Structure Code segmentation and its adaptation for the bitmap. From left to
right: islands on level 0 on hexagonal structure; orthogonal structure of the islands on level 0 (i.e. on the bitmap); island on level 1, island
on level 2 over an orthogonal bitmap. See section 2.1 for details. Image is taken from [8].

Final steps After the previous phases the results (the
regions) are represented hierarchically. Each region has
a root element which is stored either as an “immediate”
root or as a simple code element on the “top level island”.
Usually this hierarchical information cannot be used
directly. The final phase is responsible for converting them
into an appropriate format. This can be a label image or a
set of chain codes. The other important task of this phase is
to clear up some problems and difficulties of the original
segmentation algorithm.

2.2. Graph-Based Image Segmentation

The second segmentation algorithm that was used in my
work is described in [9].

A graph-based approach to segmentation is taken. Let
G = (V,E) be an undirected graph with vertices vi ∈ V ,
the set of elements to be segmented, and edges (vi, vj) ∈
E corresponding to pairs of neighboring vertices. Each
edge (vi, vj) ∈ E has a corresponding weight w((vi, vj)),
which is a non-negative measure of the dissimilarity be-
tween neighboring elements vi and vj . In the case of image
segmentation, the elements in V are pixels and the weight
of an edge is some measure of the dissimilarity between
the two pixels connected by that edge (e.g., the difference
in intensity, color, motion, location or some other local at-
tribute). In the graph-based approach, a segmentation S is
a partition of V into components such that each component
(or region) C ∈ S corresponds to a connected component
in a graph G′ = (V,E′), where E′ ⊆ E. In other words,
any segmentation is induced by a subset of the edges in E.
There are different ways to measure the quality of a seg-
mentation but in general one wants the elements in a com-
ponent to be similar, and elements in different components
to be dissimilar. This means that edges between two vertices
in the same component should have relatively low weights,
and edges between vertices in different components should
have higher weights.

Authors of the algorithm define a predicate, D, for eval-
uating whether or not there is evidence for a boundary be-

tween two components in a segmentation (two regions of
an image). This predicate is based on measuring the dis-
similarity between elements along the boundary of the two
components relative to a measure of the dissimilarity among
neighboring elements within each of the two components.
The resulting predicate compares the inter-component dif-
ferences to the within component differences and is thereby
adaptive with respect to the local characteristics of the data.

The internal difference of a componentC ⊆ V is defined
as the largest weight in the minimum spanning tree of the
component, MST (C,E). That is,

Int(C) = max
e∈MST (C,E)

w(e). (1)

The difference between two components C1, C2 ⊆ V is
defined as the minimum weight edge connecting the two
components. That is,

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj). (2)

The region comparison predicate evaluates if there is
evidence for a boundary between a pair of components
by checking if the difference between the components,
Dif(C1, C2), is large relative to the internal difference
within at least one of the components, Int(C1) and
Int(C2). A threshold function is used to control the degree
to which the difference between components must be larger
than minimum internal difference. The pairwise compari-
son predicate is defined as,

D(C1, C2) =

{
true if Dif(C1, C2) > MInt(C1, C2);

false otherwise
(3)

where the minimum internal difference, MInt, is defined
as,

MInt(C1, C2) = min(Int(C1)+τ(C1), Int(C2)+τ(C2)).
(4)

The threshold function τ controls the degree to which
the difference between two components must be greater
than their internal differences in order for there to be ev-
idence of a boundary between them (D to be true). For

small components, Int(C) is not a good estimate of the lo-
cal characteristics of the data. In the extreme case, when
|C| = 1, Int(C) = 0. Therefore, a threshold function
based on the size of the component is used,

τ(C) =
k

|C|
(5)

where |C| denotes the size of C, and k is some constant pa-
rameter. That is, for small components a stronger evidence
for a boundary is required. In practice k sets a scale of ob-
servation, in that a larger k causes a preference for larger
components.

The segmentation algorithm is as follows. The input is a
graphG = (V,E), with n vertices andm edges. The output
is a segmentation of V into components S = (C1, . . . , Cr).

1. SortE into π = (o1, . . . , om), by non-decreasing edge
weight.

2. Start with a segmentation S0, where each vertex vi is
in its own component.

3. Repeat step 4 for q = 1, . . . ,m.

4. Construct Sq given Sq−1 as follows. Let vi and vj
denote the vertices connected by the q-th edge in the
ordering, i.e., oq = (vi, vj). If vi and vj are in disjoint
components of Sq−1 and w(oq) is small compared
to the internal difference of both those components,
then merge the two components otherwise do nothing.
More formally, let Cq−1i be the component of Sq−1

containing vi and Cq−1j the component containing vj
. If Cq−1i 6= Cq−1j and w(oq) ≤ MInt(Cq−1i , Cq−1j)

then Sq is obtained from Sq−1 by merging Cq−1i and
Cq−1j . Otherwise Sq = Sq−1.

5. Return S = Sm.

Segmentation S produced by the algorithm obeys the
global properties of being neither too fine nor too coarse
(according to the terminology used in [9]) when using the
region comparison predicate D.

2.3. 2D Pair-wise Geometrical Histogram (PGH)

The pairwise geometric histogram (PGH) is a powerful
shape descriptor that is applied to polygonal shapes [1]. It
can be applied also to an irregular shape if the shape is first
approximated with a polygon.

Consider a polygon defined by its edgepoints
(x̃(t), ỹ(t)) ∈ R2. Now successive edgepoints define
the line segments the polygon consists of. The PGH is
calculated using the following strategy. Let each line seg-
ment be a reference line on its turn. Then the relative angle
θ ∈ [0, π) and the perpendicular minimum and maximum

distances (dmin and dmax) are calculated between the
reference line and all the other lines, as shown in fig. 3 (a).
The histogram values are increased by one on the indexes
corresponding to the angle θ and the line segment from the
dmin to dmax (fig. 3 (b)).

2.4. Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) is a robust image
detector and descriptor, first presented by Bay et al. in 2006
[2], that can be used in computer vision tasks like object
recognition or 3D reconstruction. It is partly inspired by
the SIFT descriptor. The standard version of SURF is
several times faster than SIFT and claimed by its authors
to be more robust against different image transformations
than SIFT.

Fast-Hessian Detector The detector is based on the
Hessian matrix because of its good performance in com-
putation time and accuracy. However, rather than using a
different measure for selecting the location and the scale
(as was done in the Hessian-Laplace detector), SURF relies
on the determinant of the Hessian for both. Given a point
x = (x, y) in an image I , the Hessian matrix H(x, σ) in x
at scale σ is defined as follows

H(x, σ) =

(
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

)
, (6)

where Lxx(x, σ) is the convolution of the Gaussian second
order derivative ∂2

∂x2 g(σ) with the image I in point x, and
similarly for Lxy(x, σ) and Lyy(x, σ).

A simpler alternative to Gaussians is used for SURF. As
Gaussian filters are non-ideal in any case, and given Lowes
success with LoG approximations, the authors of SURF
push the approximation even further with box filters. These
approximate second order Gaussian derivatives, and can be
evaluated very fast using integral images, independently of
size. It is shown that the resulting performance is compara-
ble to the one using the discretized and cropped Gaussians.

In order to localize interest points in the image and
over scales, a non-maximum suppression in a 3 × 3 × 3
neighbourhood is applied. The maxima of the determinant
of the Hessian matrix are then interpolated in scale and
image space with the method proposed by Brown et al.
[5]. Fig. 4 (left) shows an example of the detected interest
points using our Fast-Hessian detector.

SURF Descriptor The SURF descriptor of the interest
point is calculated in two stages.

The first one is orientation assignment. In order to be in-
variant to rotation, a reproducible orientation for the interest
points is identified. For that purpose, the Haar-wavelet re-
sponses in x and y directions are calculated, and this in a cir-
cular neighbourhood of radius 6s around the interest point,

Figure 3. (a) Relative angle and perpendicular distances between two lines that are calculated for the PGH. These values gathered for all
contour’s segments make up a good shape descriptor. (b) The pairwise geometric histogram itself and bins that are incremented by the
corresponding values for two lines in (a). See section 2.2 for details. Image is taken from [13].

Figure 4. Left: Detected interest points for a Sunflower field. This kind of scenes shows clearly the nature of the features from Hessian-
based detectors. Middle: Haar wavelet types used for SURF. Right: Detail of the Graffiti scene showing the size of the descriptor window
at different scales. See section 2.3 for details. Image is taken from [2].

with s the scale at which the interest point was detected.
Also the sampling step is scale dependent and chosen to be
s. In keeping with the rest, also the wavelet responses are
computed at that current scale s.

Once the wavelet responses are calculated and weighted
with a Gaussian (σ = 2.5s) centered at the interest point,
the responses are represented as vectors in a space with the
horizontal response strength along the abscissa and the ver-
tical response strength along the ordinate. The dominant
orientation is estimated by calculating the sum of all re-
sponses within a sliding orientation window covering an
angle of π

3 . The horizontal and vertical responses within
the window are summed. The two summed responses then
yield a new vector. The longest such vector lends its orien-
tation to the interest point. The size of the sliding window
is a parameter, which has been chosen experimentally.

The second stage is the extraction of the descriptor. A
square region centered around the interest point, and ori-
ented along the selected orientation is constructed. The size
of this window is 20s. The region is split up regularly into

smaller square sub-regions. This keeps important spatial
information in. For each sub-region, a few simple features
based on Haar wavelet response are computed and a feature
vector is calculated. All these vectors form the resulting
descriptor of the interest point which has 64 components.
The wavelet responses are invariant to a bias in illumination
(offset). Invariance to contrast (a scale factor) is achieved
by turning the descriptor into a unit vector.

2.5. Bag-of-words

The bag-of-words in natural language processing is a
popular method for representing documents, which ignores
the word orders. This model allows a dictionary-based
modeling, and each document looks like a ”bag”, which
contains some words from the dictionary. Computer vision
researchers uses a similar idea for image representation.

To represent an image using bag-of-words model, an im-
age can be treated as a document. Similarly, ”words” in im-
ages need to be defined too. However, ”word” in images is
not the off-the-shelf thing like the word in text documents.

To achieve this, it usually includes following three steps:
feature detection, feature description and codebook (vocab-
ulary) generation. A definition of the bag-of words model
can be the ”histogram representation based on independent
features”.

Given an input image, feature detection is an extraction
of several local patches (or regions) which are considered
as candidates for basic elements, i.e. “words”. That can
be done in many different ways (regular grid, random sam-
pling, segmentation methods to name a few). The SURF
interest point detector is used in my coursework.

After feature detection, each image is abstracted by sev-
eral local patches. Feature representation methods deal with
how to represent the patches as numerical vectors. These
methods are called feature descriptors. A good descriptor
should have the ability to handle intensity, rotation, scale
and affine variations to some extent (e.g. SURF descriptor).

The final step for the bag-of-words model is to con-
vert vector represented patches to ”codewords” (analogy to
words in text documents), which also produces a ”vocabu-
lary” (analogy to a word dictionary). A codeword can be
considered as a representative of several similar patches.
One simple method is performing k-means clustering over
all the vectors. Codewords are then defined as the centers
of the learned clusters. The number of the clusters is the vo-
cabulary size (analogy to the size of the word dictionary).

Thus, each patch in an image is mapped to a certain code-
word through the clustering process and the image can be
represented by the histogram of the codewords.

2.6. Support Vector Machine (SVM)

Support vector machines (SVMs) are a set of related su-
pervised learning methods used for classification and re-
gression. A binary (two-class) classification problem that
is solved by the most simple SVM mechanism can be de-
scribed as follows: given a set of labeled points D =
{(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}ni=1, where xi are vec-
tors of features and ci are class labels, construct a rule that
correctly assigns a new point x to one of the classes.

The vectors xi in this formulation correspond to objects,
and the dimensions of the space are the features or charac-
teristics of these objects (e.g. superpixel in the image has
an average color expressed as vector (r, g, b), an area, a
perimeter etc.).

Formalization We are given some training data D.
Each xi is a p-dimensional real-number vector. We want
to find the maximum-margin hyperplane that divides the
points having ci = 1 from those having ci = −1. Any
hyperplane can be written as the set of points x satisfying:

w · x− b = 0 . (7)

The vector w is perpendicular to the hyperplane. The pa-

Figure 5. Maximum-margin hyperplane (w · x− b = 0) and mar-
gins (w · x − b = 1 and w · x − b = −1) for a SVM trained
with samples from two classes (white and black points on the im-
age). Samples on the margin are called the support vectors. For
the SVM on the image every point that falls into the halfplane (rel-
atively to the line w · x− b = 0) with black points is calssified as
black, otherwise as white. See section 2.5 for the details. Image is
taken from [21].

rameter b
‖w‖ determines the offset of the hyperplane from

the origin along the normal vector w.
The w and b are chosen to maximize the margin. In other

words we want to maximize distance between the parallel
hyperplanes that are as far apart as possible while still sep-
arating the data. These hyperplanes can be described by the
equations:

w · x− b = 1 (8)

and
w · x− b = −1. (9)

The distance between these two hyperplanes is 2
‖w‖ , so

we want to minimize ‖w‖. To prevent data points falling
into the margin, the following constraint is added: for each
i either

w · xi − b ≥ 1 for xi of the first class (10)

or

w · xi − b ≤ −1 for xi of the second. (11)

This constraint can be rewritten as:

ci(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n. (12)

The resulting optimization problem is:

Minimize (in w, b)
‖w‖ (13)

subject to (for any i = 1, . . . , n)

ci(w · xi − b) ≥ 1 . (14)

Primal form The optimization problem presented above is
difficult to solve because it involves a square root operation.
It is possible to alter the equation by substituting ‖w‖ with
1
2‖w‖

2 without changing the solution. This is a quadratic
programming (QP) optimization problem:

Minimize (in w, b)
1

2
‖w‖2 (15)

subject to (for any i = 1, . . . , n)

ci(w · xi − b) ≥ 1 . (16)

The previous constrained problem can be expressed as

min
w,b

max
α

{
1

2
‖w‖2 −

n∑
i=1

αi[ci(w · xi − b)− 1]

}
(17)

that is we look for a saddle point. In doing so all the points
which can be separated as ci(w · xi − b) − 1 > 0 do not
matter since we must set the corresponding αi to zero.

The solution can be expressed by terms of linear combi-
nation of the training vectors as

w =

n∑
i=1

αicixi . (18)

Only a few αi will be greater than zero. The correspond-
ing xi are exactly the “support vectors”, which lie on the
margin and satisfy ci(w · xi − b) = 1. This leads to:

w · xi − b = 1/ci = ci ⇐⇒ b = w · xi − ci (19)

which allows one to define the offset b. In practice, it is
more robust to average over all NSV support vectors:

b =
1

NSV

NSV∑
i=1

(w · xi − ci) . (20)

Soft margin If there exists no hyperplane that can
split the training data, the “Soft Margin” method (1995,
Corinna Cortes and Vladimir Vapnik [6]) will choose a
hyperplane that splits the examples as cleanly as possible,
while still maximizing the distance to the nearest cleanly
split examples. The method introduces slack variables, ξi,

which measure the degree of misclassification of the datum
xi

ci(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n . (21)

The objective function is then increased by a function which
penalizes non-zero ξi, and the optimization becomes a trade
off between a large margin, and a small error penalty. For
linear penalty function, the optimization problem becomes:

min
w,ξ

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
(22)

subject to (for any i = 1, . . . n)

ci(w · xi − b) ≥ 1− ξi, ξi ≥ 0 . (23)

This constraint in (21) along with the objective of
minimizing ‖w‖ can be solved using lagrange multipliers
as done in Primal form subsection.

Non-linear classification In 1992, Bernhard Boser, Is-
abelle Guyon and Vapnik [4] suggested a way to create
non-linear classifiers by applying the kernel trick (origi-
nally proposed by Aizerman et al.) to maximum-margin
hyperplanes: every dot product is replaced by a non-linear
kernel function in the original algorithm. This allows
the algorithm to fit the maximum-margin hyperplane in
a transformed feature space. The transformation may be
non-linear and the transformed space high dimensional.
This yields a classifier that may be non-linear in the original
input space.

If the kernel used is a Gaussian radial basis function
(RBF) (k(xi,xj) = exp(−γ‖xi − xj‖2), for γ > 0), the
corresponding feature space is a Hilbert space of infinite di-
mension.

The kernel is related to the transform ϕ(xi) by the
equation k(xi,xj) = ϕ(xi) · ϕ(xj). The value w is also
in the transformed space, with w =

∑
i αiciϕ(xi). Dot

products with w for classification can again be computed
by the kernel trick, i.e. w · ϕ(x) =

∑
i αicik(xi,x).

However, there does not in general exist a value w such that
w · ϕ(x) = k(w′,x).

Multiclass SVM Multiclass SVM aims to assign la-
bels to instances by using support vector machines, where
the labels are drawn from a finite set of several elements.
Many methods exist for building a multiclass classifier
system from binary classifiers (one-vs-all, one-vs-one etc.).
Cramer and Singer [7] suggested a different approach.
Suppose there are K classes. Then the optimization
problem is as follows:

min
wj ,ξ

1

2

K∑
j=1

‖wj‖2 + C

n∑
i=1

ξi

 (24)

subject to (for any i = 1, . . . n , j = 1, . . .K : ξi ≥ 0 , j 6=
yi)

(wyi · xi −wj · xi) ≥ 1− ξi . (25)

The resulting decision function is:

f(x) = arg max
j=1,...,K

wj · x . (26)

3. Proposed algorithm
3.1. Training data and its conversion

The input data is a set of scenes which contain different
types of objects (there are 8 types in total: cars, pedestrians,
buildings, roads, sky, trees, sidewalks and bicycles). Ev-
ery object is marked with a polygon and a corresponding
label that are stored in a .xml file. The data should be con-
verted to a form that is acceptable by the chosen classifica-
tion method. My work uses multiclass SVM, so the training
set is represented as multidimensional floating-point vec-
tors. It is done with the following procedure.

There are two options for the initial extraction of a set
of segments (connected subsets of pixels, superpixels). The
first one is to extract them from each input image using the
polygon information from the .xml file. The second one is
to process all images through the segmentation algorithm.
Each segment is then analyzed and a corresponding vector
of features is extracted.

To store color information of the super-pixel its average
color in the RGB color space is placed to the first 3 compo-
nents of the feature vector.

The fourth component is the area of the segment (i.e. the
number of pixels in the subset). The fifth component is a ra-
tio of the area and a square of the perimeter (i.e. the number
of border pixels) of the segment. The next 64 components
are the linearized 2D PGH of the outer contour of the seg-
ment. These 1+1+64 = 66 values describe the shape and
the size of the super-pixel.

The last B components are the bag-of-words histogram
for the grayscaled interior of the segment. They give some
information about the contents of the super-pixel (in terms
of texture, interest points etc.).

The method of extracting the vector of features is pretty
straight-forward except the components which correspond
to the bag-of-words histogram. Those are filled using the 2-
pass procedure. The bag-of-words vocabulary is built dur-
ing the first pass:

• Interest points with their SURF descriptors are calcu-
lated for each segment of each photograph in the train-
ing data set;

• All the obtained descriptors are stored in a general set;

• A general set is divided into clusters using the k-means
algorithm (i.e. the centers of each cluster are found; B
centers in total).

After that an interest point is said to be one the B words if
the euclidean distance between its descriptor and the corre-
sponding center of a cluster is the smallest.

During the second pass each interest point of a segment
is labeled with the word and the bag-of-words histogram is
built.

Thus, the training set of photographs is transformed into
the set of vectors (one vector per segment).

The labels of all the vectors are obtained depending on
the option chosen on the initial step. In the first case the la-
bels are read from the corresponding .xml files. The second
case is slightly more complicated. Let us consider a vector,
a corresponding segment (with area α) and an image which
contains this segment. An image is marked with the set of
filled polygons (they are stored in the .xml). A segment
is intersected with each polygon in turn and the area αi of
intersection is calculated. The label of a polygon with the
greatest αm is chosen for the segments feature vector (just
in case if the ratio αm/α > τ , where τ is some threshold;
the segment is removed from the training set otherwise).

3.2. SVM model training

One should scale the obtained general set of labeled vec-
tors. Scaling before applying SVM is very important. Part
2 of Sarle’s Neural Networks FAQ [18] explains the im-
portance of this and most of considerations also apply to
SVM. The main advantage of scaling is to avoid attributes
in greater numeric ranges dominating those in smaller nu-
meric ranges. Another advantage is to avoid numerical dif-
ficulties during the calculation. Because kernel values usu-
ally depend on the inner products of feature vectors, e.g. the
linear kernel and the polynomial kernel, large attribute val-
ues might cause numerical problems. So i-th component of
features vector is scaled to the range [0, 1] with the linear
function fi, where i = 1 . . . 3 + 1 + 1 + 64 +B.

Linear and RBF were chosen as the SVM kernels.
RBF kernel nonlinearly maps samples into a higher di-

mensional space so it, unlike the linear kernel, can han-
dle the case when the relation between class labels and at-
tributes is nonlinear. Furthermore, the linear kernel is a spe-
cial case of RBF Keerthi and Lin [14] since the linear ker-
nel with a penalty parameter C has the same performance
as the RBF kernel with some parameters (C, γ). Moreover
the RBF kernel has fewer numerical difficulties and reason-
able number of parameters (e.g. comparing to the polyno-
mial kernel).

However high dimensional input vectors are well sepa-
rated with linear kernel. Moreover an SVM with such ker-
nel works significantly faster.

(C, γ) selection is done by “grid-search” using cross-
validation.

In v-fold cross-validation, we first divide the training set
into v subsets of equal size. Sequentially one subset is tested

using the classifier trained on the remaining v − 1 subsets.
Thus, each instance of the whole training set is predicted
once so the cross-validation accuracy is the percentage of
data which are correctly classified. Such procedure can pre-
vent the overfitting problem.

Various pairs of (C, γ) values are tried and the one
with the best cross-validation accuracy is picked. As sug-
gested by the developers of libsvm exponentially growing
sequences of C and γ are used for the grid [12].

3.3. Test data labeling

The test data is a photograph that contains various ob-
jects of mentioned types. One must detect them and clas-
sify. Following procedure is proposed.

Firstly the image is converted to the set of features vec-
tors pretty much in the same way how it was done for the
training data. There is only two exceptions. The first one:
segments are generated by the segmentation algorithm. The
second one: and the bag-of-words histogram for each seg-
ment is built using the vocabulary that was formed on the
stage of analyzing the training data (i.e. only second pass of
mentioned 2-pass procedure is used).

The obtained vectors are scaled using fi from previous
section and fed to the input of multiclass SVM. The output
labels are used for the classification of segments.

An optional improvement may be applied . The basic
idea of it is borrowed from [17]. The test image can be seg-
mented in several different ways. Each segmentation can be
classified with the mentioned SVM. Let {Si} be the collec-
tion of these classifications. One can determine (manually
or automatically) Si which contains the most precise seg-
ments for the objects of the particular class. It can be done,
for example, by using segmentation of the pre-classified im-
ages. So it is reasonable to consider Si a better classifica-
tion for that class. One can simply “sum up” all the {Si}
with weights {Ci} where Ci is greater than the other. This
yields a classification which is more accurate for the partic-
ular class. The same applies to the other classes.

4. Results
The proposed algorithm was tested on The StreetScenes

Challenge Framework [3]. A subset of the given images
(about 100 images) was used to train the multiclass SVM.
The training samples were generated using three meth-
ods. The first two are based on sets of segments obtained
from segmentation algorithms (namely CSC and graph-
based one), the third is based on a set that was read from
file (handmarked by the authors of the framework). All the
training samples were passed to the input of the SVM to
check if there were mistakes in the implementation of the
method and the accuracy was calculated. This step revealed
that CSC algorithm (all range of parameters was tested) is

inacceptable slow and produces too much segments (over
50k versus 5k by graph-based segmentation) which don’t
contain any whole objects. So it was decided to exclude
CSC from tests.

Several examples of the resulting classifications of the
test images can be viewed on fig. 6 - 10. Table 1 contains
accuracies for several modifications of the proposed algo-
rithm. The leftmost column describes the method of train-
ing segments’ set extraction. The second one is number of
bins in the bag-of-words histogram. The third column de-
scribes the type of kernel that was used for the SVM. The
header of the table contains 7 different parameters (k) for
the graph-based segmentation algorithm.

The accuracy of a particular modification is calculated
as follows. A control set of images with corresponding
ground-truth classification maps is chosen. Each image
from the set is fed to the input of the algorithm. This results
a “algorithm’s version” of a classification map for each con-
trol photo. All these maps are compared to the ground-truth
maps pixel by pixel. The accuracy is the number of matched
pixels divided by the total number of pixels.

The shape-describing components are not used in the in-
put vectors for the SVM. Early tests showed that the pres-
ence or absence of such descriptors does not significantly
affect the proposed algorithm’s performance. This is prob-
ably due to nature of superpixels produced by the segmen-
tation (their shapes and boundaries).

It can be noticed that in general the proposed algorithm
produces better (in terms of accuracy defined above) clas-
sification maps when the training set of segments is gener-
ated by the segmentation algorithm. Secondly, the accuracy
reaches its maximum when graph-based segmentation algo-
rithm parameter is about 800.0-1000.0 (see the highlighted
value in the table). Too small values of the parameter cause
the segmentation algorithm to produce non-discriminative
superpixels (they contain no whole objects); too large val-
ues yield too large segments with several objects per one
superpixel. The proposed algorithm woks better with big-
ger number of bag-of-words bins and linear kernel chosen
for SVM. Be that as it may, the difference between linear
and RBF kernels reduces when fewer bins are used.

One can note some misclassifications. Probable causes
of them are discussed in the summary section.

5. Summary
An algorithm of detection and classification of objects

on the image has been presented. It works quite acceptable
on the test data. But it has a major drawback which can be
fixed and thus effectiveness of the method will be signifi-
cantly improved. That is the segmentation stage. Currently
an image is separated into super-pixels that do not always
correspond to the objects on it (some segments include more
than one object, others represent non-discriminative parts of

Graph segmentation parameter
500.0 800.0 1000.0 1300.0 1500.0 1700.0 2000.0

Training set
of segments
read from file

2048 bins Linear 0.392638 0.453515 0.418384 0.408333 0.415309 0.475747 0.471167
RBF 0.326291 0.331649 0.311874 0.382448 0.359752 0.419894 0.424669

1024 bins Linear 0.372686 0.396029 0.405263 0.394383 0.39246 0.393165 0.370746
RBF 0.339466 0.346305 0.336582 0.322061 0.313437 0.306198 0.329108

512 bins Linear 0.41326 0.508071 0.475715 0.462077 0.395269 0.424606 0.44737
RBF 0.319144 0.360606 0.34059 0.377863 0.377691 0.391715 0.367895

Training set
of segments
generated by
segmentation

2048 bins Linear 0.492704 0.678004 0.624416 0.645422 0.661948 0.674248 0.630718
RBF 0.601622 0.60931 0.626852 0.518661 0.548584 0.576272 0.500707

1024 bins Linear 0.621804 0.677689 0.622303 0.52346 0.632322 0.564095 0.664618
RBF 0.542109 0.636555 0.592278 0.632291 0.608653 0.555219 0.591704

512 bins Linear 0.591347 0.522702 0.64467 0.578042 0.593019 0.597141 0.651216
RBF 0.584374 0.569661 0.673198 0.616584 0.579944 0.626553 0.517795

Table 1. Results for several baselines. The leftmost column describes the method of training segments’ set extraction. The second one
is number of bins in the bag-of-words histogram. The third column describes the type of kernel that was used for the SVM. The next 7
columns contain accuracies that correspond to 7 values of segmentation parameter. The maximal accuracy is highlighted. See section 4 for
more details.

the objects). Selection and testing of various segmentation
methods in order to make the proposed algorithm perform
better in experiments is subject to further research.

References
[1] A. Ashbrook, N. Thacker, and P. Rockett. Pairwise geomet-

ric histograms: A scalable solution for the recognition of 2d
rigid shape. In SCIA95, pages 271–278, 1995. 4

[2] H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf: Speeded up
robust features. In A. Leonardis, H. Bischof, and A. Pinz, ed-
itors, ECCV (1), volume 3951 of Lecture Notes in Computer
Science, pages 404–417. Springer, 2006. 4, 5

[3] S. Bileschi. StreetScenes: Towards scene understanding in
still images. PhD thesis, Massachusetts Institute of Technol-
ogy, 2006. 9

[4] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm
for optimal margin classifiers. In COLT, pages 144–152,
1992. 7

[5] M. Brown and D. G. Lowe. Invariant features from interest
point groups. In P. L. Rosin and A. D. Marshall, editors,
BMVC. British Machine Vision Association, 2002. 4

[6] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995. 7

[7] K. Crammer and Y. Singer. On the algorithmic implementa-
tion of multiclass kernel-based vector machines. Journal of
Machine Learning Research, 2:265–292, 2001. 7

[8] G. Dorko, D. Paulus, U. Ahlrichs, and L. fur Mustererken-
nung. Color segmentation for scene exploration. In Work-
shop Farbbildverarbeitung, 2000. 2, 3

[9] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based
image segmentation. International Journal of Computer Vi-
sion, 59(2):167–181, 2004. 3, 4

[10] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.
Multi-class segmentation with relative location prior. Inter-

national Journal of Computer Vision, 80(3):300–316, 2008.
1

[11] X. He, R. Zemel, and M. Carreira-Perpinán. Multiscale con-
ditional random fields for image labeling. 2004. 1

[12] C. Hsu, C. Chang, C. Lin, et al. A practical guide to support
vector classification, 2003. 9

[13] J. Iivarinen, M. Peura, J. Sarela, and A. Visa. Comparison of
combined shape descriptors for irregular objects. In Proceed-
ings of the 8th British Machine Vision Conference, volume 2,
pages 430–39. Citeseer, 1997. 5

[14] S. Keerthi and C. Lin. Asymptotic behaviors of support vec-
tor machines with Gaussian kernel. Neural computation,
15(7):1667–1689, 2003. 8

[15] P. Kohli, L. Ladickỳ, and P. Torr. Robust higher order poten-
tials for enforcing label consistency. International Journal
of Computer Vision, 82(3):302–324, 2009. 1

[16] V. Rehrmann and M. Birkhoff. Echtzeitfähige objektverfol-
gung in farbbildern. Fachberichte Informatik, 15(1):13–16,
1995. 2

[17] B. Russell, W. Freeman, A. Efros, J. Sivic, and A. Zisser-
man. Using multiple segmentations to discover objects and
their extent in image collections. In 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, volume 2, 2006. 9

[18] W. S. Sarle. Neural Networks FAQ, 1997.
http://www.faqs.org/faqs/ai-faq/neural-nets/.
8

[19] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. Computer
Vision–ECCV 2006, pages 1–15. 1

[20] A. Torralba, K. Murphy, and W. Freeman. Contextual models
for object detection using boosted random fields. Citeseer,
2004. 1

(a) Image

(b) Resulting segmentation

(c) Ground truth

Figure 6. Example output of the proposed algorithm. Different
colors correspond to different classes of objects. See sections 4
and 5 for details.

[21] Wikipedia. Support vector machine.
http://en.wikipedia.org/wiki/Support vector machine.

(a) Image

(b) Resulting segmentation

(c) Ground truth

Figure 7. Example output of the proposed algorithm.

1, 6

(a) Image

(b) Resulting segmentation

(c) Ground truth

Figure 8. Example output of the proposed algorithm.

(a) Image

(b) Resulting segmentation

(c) Ground truth

Figure 9. Example output of the proposed algorithm.

(a) Image

(b) Resulting segmentation

(c) Ground truth

Figure 10. Example output of the proposed algorithm.

